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We investigate the band structure of a class of photonic crystals made from only thin wires. Using a different
method, we demonstrate that a complete photonic band gap is possible for such materials. Band gap materials
normally consist of space filling dielectric or metal, whereas thin wires occupy a very small fraction of the
volume. We show that this is related to the large increase in scattering at the Brillouin zone boundary. The
method we developed brings together the calculation techniques in three different fields. The first is the
calculation of scattering from periodic, tilted antennas, which we improve upon. The second is the standard
technique for frequency selective surface design. The third is obtained directly from low energy electron
diffraction theory. Good agreements with experiments for left handed materials, negative materials, and
frequency selective surfaces are demonstrated.
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I. INTRODUCTION

Photonic crystals are metamaterials in which the propa-
gating properties of electromagnetic waves on a subwave-
length scale can be manipulated by modifying the structure
of a dielectric or metallic material periodically. For certain
structures, it is possible to have a photonic band gap, a range
of frequency in which the electromagnetic waves cannot
propagate. This discovery has led to significant development
in applications for photonic devices �1� and better under-
standing in the production of color by some living things �2�.
More recently, numerous applications to accelerators have
been studied �3�. In recent years, a large variety of metama-
terials have been developed. One example is left handed ma-
terial, which has a negative index of refraction �4�. The ele-
ment is shaped in such a way that the current induced would
flow along curved paths, resulting in magnetic permeability.
At a certain frequency range, both permittivity and perme-
ability may become negative, leading to a negative index of
refraction. Other examples are photonic band gap materials,
which inhibit the propagation of electromagnetic waves over
a certain frequency range, known as the band gap �5�. These
can be made up of dielectric or metallic elements. Incident
waves are scattered from these elements and undergo mul-
tiple scattering among them. For suitable combinations of
element designs and lattice structures, band gaps can result.

Most photonic band gap materials are made from either
space filling dielectric to provide for sufficient wave scatter-
ing �6�, or closely spaced metal pieces to produce strong
capacitive effects �5�. Thin wires that are continuous through
space have been shown to produce a cutoff frequency, ex-
plained in terms of plasmon resonance, below which no elec-
tromagnetic waves can propagate �7,8�. A complete photonic
band gap that appears in between passbands has not been
demonstrated for photonic crystals made from only thin
wires. Such a material, if possible, would be interesting be-
cause the lightweight nature and design possibilities of the

thin wires would offer significant new potential for
applications.

The main difficulty in producing a complete gap for thin
wires is the generally weak scattering due to the extremely
small volume fraction that they occupy. However, it is
known that when the half wavelength of the propagating
wave corresponds to the dimension of a piece of wire, there
could be a large increase in scattering �9�. We suggest that in
order to create a photonic band gap, the wire element must
be designed in such a way that its resonance frequency
coincides with the expected band gap. This would then pro-
duce the scattering where it matters most and hopefully, with
a judicious choice of lattice symmetry, produce a complete
gap.

In order to investigate this possibility, we require a
method that can compute the band structures of thin wire
photonic crystals quickly and reliably. At present, calculation
methods tend to use a combination of electromagnetic simu-
lation method and the transfer matrix method �10�. There are
a variety of the former, but the ones more commonly used
for left handed materials involve discretization of all space in
the unit cell, which may be classified as finite-difference
time-domain �FDTD� or finite element method �FEM� �11�.
Although efficient and accurate, it can still be time consum-
ing when the amount of structural detail in the element in-
creases. In particular, this can happen for thin wires with
large aspect ratios. There is another electromagnetic simula-
tion method known as Method of Moment �12� which is
suitable for metallic elements and discretizes only the ele-
ment. In particular, when the element consists only of thin
wires, the method can become quite simple and efficient. The
resulting speed would be useful when mapping out the large
number of points in the band structure.

Consider the scattering of electromagnetic wave by one
layer of thin wire elements. There is already a technique for
this which is originally used for the design of frequency se-
lective surfaces �FSS� �13�. Next, consider assembling the
layers to calculate the multiple reflections between them. It
turns out that there is also a technique for doing this in low
energy electron diffraction �LEED� theory for scalar waves
�14�. After some modifications, we find that the two tech-*k.m.hock@dl.ac.uk
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niques can be merged and applied to transmission, reflection,
and band structure calculations for electromagnetic waves.
The approach of treating the material as layers is similar to
the transfer matrix method �15� used to calculate photonic
band structure.

A frequency selective surface �FSS� consists of an array
of metallic elements arranged periodically over a two-
dimensional �2D� plane �13,16�. The elements normally con-
sist of thin, flat metallic patterns that lie in the array plane.
One or more arrays of these elements may be embedded in a
stratified dielectric medium. This has the property of allow-
ing only an electromagnetic wave in a certain frequency
range to pass through, and has important applications such as
in radomes and in absorbers. Many methods have been de-
veloped for FSS design. In this paper, we consider elements
that can be modeled as thin wires, and develop a fast design
method using a combination of techniques. We use a version
of the periodic moment method �PMM� in which the mul-
tiple scattering for each array is calculated using the vector
potential and electric potential �17,18�. This is followed by
the use of a version of a cascading method to calculate the
arrays embedded in a stratified dielectric medium �14,19,20�.

The calculation using vector and electric potential is origi-
nally developed for a planar array of antennas made of thin
wires that are tilted out of plane �17�. Calculating the E field
in terms of vector and electric potentials seems to give better
convergence property for tilted elements. In �18�, the method
is modified to remove a few of the approximations used and
shown to give good agreement with measurement metamate-
rials consisting of split ring resonators, in which the elements
are tilted out of plane. The method appears not to have been
applied to FSS for which elements lie in plane. We believe
that the improved convergence property should also carry
over to FSS calculation, and show in this paper that this can
be achieved without sacrificing the level of accuracy. The use
of vector and electric potential for the E field means that
transmission and reflection at dielectric interface cannot be
calculated directly using the Fresnel coefficients. Hence the
multiple scattering for an array embedded in a stratified me-
dium cannot be carried out using the “bounce mode organi-
zation” treatment of the type described in �14�. Fortunately,
methods already exist that can overcome this problem.

The cascading method makes use of the multiple scatter-
ing results for individual arrays, and combines them into
multiple layers quickly at much lower computation cost than
the “bounce mode organization” method. A cascading
method has been developed over 30 years ago to assemble
layers of atoms for electron diffraction calculation �14�. It is
applied about ten years ago to photonic band structure cal-
culations and is also widely used now for left handed mate-
rials �10�, where it is known as the transfer matrix method.
At about the same time, the cascading method in a similar
form began to be applied to the FSS design �16,20�. In all
three versions, the method uses the terms from the plane
wave expansion in the multiple scattering calculation of each
array, and combines a small number of them appropriately
with those of the next layer. In electron diffraction calcula-
tion, these terms are called electron beams, in the transfer
matrix method they are just electromagnetic waves, and in
FSS they are called Floquet harmonics. In all cases, they are

plane waves, and we show that the original form developed
for electron diffraction can be easily applied with very few
modifications.

II. FORMALISM

Here, we develop the moment method for thin wire
metamaterials. In Sec. II A, we consider a 2D planar array of
thin wire elements that are periodic and tilted out of plane.
We develop the method for calculating the scattering of an
electromagnetic plane wave incident on the array. In Sec.
II B, we review the methods used to calculate scattering of
microwave from frequency selective surfaces �FSS�, and
scattering of electrons from crystal surfaces. We explain how
these three methods can be combined to calculate wave
propagation through a three-dimensional �3D� thin wire
metamaterial.

A. Vector-electric potential method for tilted elements

In this section, we consider a single layer of elements that
can be modeled as thin wires. This would include a large
class of left handed materials. These are often made from
thin copper strips printed on circuit boards to form continu-
ous wires and split ring resonators. It would also include a
small class of photonic crystals made from wires �8�. We
develop a method that is suitable for the calculation of trans-
mission and reflection for such metamaterials. The method is
essentially a modification on an existing method for calcu-
lating multiple scattering in an array of wire antennas �17�,
which we shall call the vector-electric potential method.

This is a moment method, which involves calculating the
E field from the current in each wire segment. Two main
approximations are made in �17�. One is the use of pulsed
basis function for the current, i.e., the current is approxi-
mated to a constant value over the segment. Another is as
follows. First, the E-field calculation is decomposed into two
terms, a vector potential term and an electric potential term.
The electric potential term is calculated from the charge den-
sity on the segment. For a pulsed basis function, the charge
density consists of two point charges at the ends of the seg-
ment, because the current terminates abruptly there. Each of
these is approximated in �17� as a line charge centered at the
corresponding point, and of the same length as the original
segment. In fact, it is possible to carry out the calculation
using the point charges. However, when the array plane of
the observation point where the E field is calculated passes
through a point charge, the plane wave sum diverges. �Plane
wave sums for the vector and electric potentials are given in
�17�. Plane wave sums for E fields are given in Sec. II B�.
Although, it is possible to try and select observation points
such that their array planes do not pass through any segment
end, this quickly becomes very difficult and inconvenient for
a wire element that is not straight and has more than a few
elements. This may be a reason for the use of the line charge
approximation in �17�.

Here, we make two modifications. Following Ref. �12�,
we replace the pulsed basis function with a sinusoidal basis
function as follows:

KAI MENG HOCK PHYSICAL REVIEW E 77, 036701 �2008�

036701-2



Ij = Aj + Bj sin ��s − sj� + Cj cos ��s − sj� . �1�

Suppose the wire element is divided into Ns segments. We
approximate the current in the jth segment using the basis
functions in Eq. �1�. Aj, Bj, and Cj are the unknown coeffi-
cients, � is the magnitude of the wave vector, s is the dis-
tance along the wire, starting from 0 at the beginning of first
segment, and sj is the value of s at the center of the jth
segment. The current is required to be continuous over the
whole wire element. Apart from being more physical and
having better convergence property, the smoothness also
means that the point charges at the common ends of adjacent
segments cancel exactly. The calculation of the E field can
then be carried out for the given basis functions without the
need to consider the point charges. We have thus removed
the need to approximate these as line charges. In an earlier
paper �18� where this method has been very briefly sketched
out, we have shown that it is able to give good agreement
with measurement on split ring resonators. Here, we show
that it is also useful for left handed materials.

There are many variations on the method of moment. We
use the following version for thin wires. Consider a simple
wire element of finite length and zero radius. More compli-
cated cases may be treated using techniques in �12�. The wire
is first divided into segments. The current in each segment is
approximated by a basis function multiplied by an unknown
coefficient to be determined. The E field on the surface at the
center of another segment due to this basis function is com-
puted. The first segment is called the source segment, and the
point on the second segment is called the observation point.
The actual E-field contribution from the source segment is
obtained by multiplying with the unknown coefficient. The
total E field is obtained by adding together contributions
from all segments of the wire, and then adding to the inci-
dent E field at the observation point. The component of this
sum along the observation segment is set to zero for a perfect
conductor, or related to the current at that segment using
Ohm’s law. Each observation point results in one equation
with a number of unknown coefficients. The resulting linear
system of equations can then be solved. The coefficients ob-
tained are then used to calculate the actual current in each
segment and, from this, the scattered field. We use the point
matching method, in which only values of the incident E
field at the observation points are required. The formulas
developed are given in Appendix A.

B. Direct E-field method for planar elements

The results in Sec. II A can be used to calculate scattering
from multiple arrays by using a cascading method, which
will be described in Sec. II C. Here, we list a set of formulas
that are widely used in the engineering literature to calculate
scattering from a single layer of planar elements, usually in
the form of frequency selective surfaces. These can only be
used for elements that are not tilted out of plane. We list
them here because they are very well established in the en-
gineering literature, and will serve as a useful comparison in
Sec. II C with the method described in Sec. II A, which have
not previously been published.

We list the expressions required for direct E-field calcu-
lation �13�, using the sinusoidal basis function of the same
type as in Eq. �1� in order to facilitate comparison. In the thin
wire approximation, the wire element is divided into Ns seg-
ments. From the results in �12,21�, the E field due to this
current at any point R can be written in the following form:

E�R,R j� = AjE0�R,R j� + BjEs�R,R j� + CjEc�R,R j� , �2�

where E0 is the E field when Ij is 1, Es is the E field when Ij
is sin ��s−sj�, and Ec is when Ij is cos ��s−sj�. These are in
turn given by the following plane wave sums:

E0 =
Z

2DxDz
�

k=−�

�

�
n=−�

�
exp�− j��Ri − R j� · r̂��

ry

�sinc��p̂ j · r̂�lj/2�ē�, �3�

Ec =
E+1 + E−1

2
, �4�

and

Es =
E+1 − E−1

2j
, �5�

where

E+1 =
Z

2DxDz
�

k=−�

�

�
n=−�

�
exp�− j��Ri − R j� · r̂��

ry

�sinc��1 + �p̂ j · r̂��lj/2�ē�, �6�

E−1 =
Z

2DxDz
�

k=−�

�

�
n=−�

�
exp�− j��Ri − R j� · r̂��

ry

�sinc��− 1 + �p̂ j · r̂��lj/2�ē�, �7�

and ē�= �p̂ j � r̂��� r̂�. p̂ j is a unit vector parallel to segment
j, and lj the length of the segment. r̂� is given in Appendix
A. Equations �4� and �5� are based on the relation between
sin x, cos x, and exp��jx�. Equation �3� is explained in �13�.
Equations �6� and �7� are derived in a similar way for Ij equal
to exp�jx� and exp�−jx�, respectively. These equations can be
used to calculate scattering from elements that lie in the array
plane, but not when they are tilted out of plane. The close
relationship with the method in Sec. II A, which can be used
for tilted elements, is explained in Appendix B.

As in Sec. II A, the unknown coefficients are obtained by
relating these to the incident E field and the wire resistance.
Ohm’s law gives

�
j=1

Ns

Vij = ĪiZ̄i, �8�

where Z̄i is the impedance of segment i, which we approxi-
mate using the impedance per unit length of an infinitely
long cylinder �22�. The total voltage on segment i is approxi-
mated by
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Vij = �Ei
inc + Eij� · pili, �9�

where Eij =E�Ri ,R j�. The incident field Ei
inc will be obtained

later from one of the plane wave terms used in the cascading
method.

C. Cascading method for multiple layers

We list here the expressions for the cascading method use
in electron diffraction theory. These have been explained in
�14�. The relation between the plane wave amplitudes on the
one side of layer m, and those on the other side is given by

amg�
+ = �

g
�Ig�g + Mg�g

++ �m��

�exp�− i�Kg
+ ·

1

2
cm−1 + Kg�

+ ·
1

2
cm�	am−1g

+ + Mg�g
+− �m�

�exp�− i�− Kg
− ·

1

2
cm + Kg�

+ ·
1

2
cm�	amg

−

= �
g

Qg�g
I �m�am−1g

+ + Qg�g
II �m�amg

− , �10�

and

am−1g�
− = �

g
�Ig�g + Mg�g

−− �m��

�exp�− i�− Kg
− ·

1

2
cm − Kg�

− ·
1

2
cm−1�	amg

−

+ Mg�g
−+ �m�exp�− i�− Kg�

− ·
1

2
cm−1

+ Kg
+ ·

1

2
cm−1�	am−1g

+ = �
g

Qg�g
IV �m�amg

−

+ Qg�g
III �m�am−1g

+ . �11�

Note that we follow the convention in engineering and have
reversed the signs of the wave vectors in the exponentials,
since many of the formulas in this paper originated from the
engineering literature. The link between this and the FSS
equations above becomes clear once we identify the follow-
ing relation between the wave vectors:

Kg
� = �r̂�. �12�

Mg�g
+− , for example, is the amplitude scattered into r̂+� from the

wave incident along r̂−. Note that in electron diffraction, it is
sufficient to treat the electrons as scalar waves. Since elec-
tromagnetic waves have two polarizations, Mg�g

+− would
therefore be expanded into a 2�2 matrix. Defining the fol-
lowing two polarization directions,

n� =
r̂ � nD


r̂ � nD

and n� = r̂ � n�, �13�

where nD is a unit vector normal to the layer, the 2�2 ma-
trix would contain the amplitudes scattered into polarization
n� or n�, from the wave incident with polarization n� or n�.
amg

� are likewise expanded into a 2�1 column vector con-

taining the amplitudes for the n� and n� polarizations. The
layers can then be assembled in pairs by the following
expressions:

QI�12� = QI�2��I − QII�1�QIII�2��−1QI�1� ,

QII�12� = QII�2� + QI�2�QII�1��I − QIII�2�QII�1��−1QIV�2� ,

QIII�12� = QIII�1� + QIV�1�QIII�2��I − QII�1�QIII�2��−1QI�1� ,

QIV�12� = QIV�1��I − QIII�2�QII�1��−1QIV�2� . �14�

The Q matrices are as defined in Eqs. �10� and �11�. Note
that QI, QIV are for transmission, and QII, QIII are for reflec-
tion. We do not make any claim about the use of these ex-
pressions for FSS except that they are convenient.

An important practical aspect of FSS is the stratified di-
electric medium in which the array or arrays have to be em-
bedded for applications. This can be treated by constructing
the Q matrices for each and every dielectric interface and
layer. The Q matrices for an interface are constructed from
the following Fresnel coefficients, defined in �13�. Following
the notations there, we have, for reflection between layers 1
and 2,

�
E �1,2 =

Z2r1y − Z1r2y

Z2r1y + Z1r2y
, �

E�1,2 =
Z2r2y − Z1r1y

Z2r2y + Z1r1y
, �15�

and for transmission,

�
E T1,2 = 1 + �

E �1,2, �
E�1,2 = 1 + �

E�1,2. �16�

Then Qg�g
I and Qg�g

III are null 2�2 matrices since the interface
has no periodicity, unless g�=g, when

Qgg
III = ��

E �1,2 0

0 − �
E�1,2

� , �17�

and

Qgg
I = ��

E T1,2 0

0 �
ET1,2

r1y

r2y
 . �18�

Likewise for Qg�g
IV and Qg�g

II but with indices 1 and 2 inter-
changed. Notice the factor of r1y /r2y for �� required by the
convention in �13�. More importantly, note that an additional
negative sign is required for �� because n� is reflected in the
incidence normal on reflection.

The Q matrices between two adjacent interfaces are con-
structed as follows. Within the same dielectric layer, no re-
flection is involved, so Qg�g

II and Qg�g
III are all zero 2�2 ma-

trices. Qg�g
I and Qg�g

IV simply have to provide the necessary
phase factors for transmission through the layer thickness. So
they are zero 2�2 matrices unless g�=g, when

Qg�g
I = �exp�− j�dmnD · r+nr� 0

0 exp�− j�dmnD · r+nr�
� ,

�19�

and
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Qg�g
IV = �exp�− j�dmnD · r−nr� 0

0 exp�− j�dmnD · r−nr�
� ,

�20�

where dm is the thickness of the mth dielectric layer, and nr is
the refractive index.

In order to obtain the band structure, the Bloch waves are
first computed by �14�

� QI QII

− �QIV�−1QIIIQI �QIV�−1�I − QIIIQII� 	�bi−1
+

bi
− 	

= exp�− ik · c��bi−1
+

bi
− 	 �21�

for each frequency and K�. In principle, the corresponding ky
can then be obtained from the eigenvalues when these are
equal to 1. Except for the reversal in sign of k, both the
above sets of equations can be used directly without further
modification.

There are a few convergence issues in this method. One is
the tolerance of the sum of the plane wave expansion in the
FSS calculation. Another is the number of segments needed
to model each wire element. A third is the number of beams
required for the Q-matrices calculation. In the following cal-
culations, we have found that a tolerance smaller than 0.001
does not make much difference to the final results. The plane
wave sum in one layer is the most time consuming part of
the calculation, and depends directly on the number of seg-
ments Ns. We try to minimize this, so the convergence has to
be checked by varying Ns. We define Ng to be the number
such that every beam �n ,k� for which �n2+k2 does not ex-
ceed this value is included. We found that in all cases below,
convergence is achieved for Ng=2. Calculation of the Q ma-
trices is much faster than the plane wave sum, as is the final
assembly of the layers.

III. RESULTS AND DISCUSSION

In Sec. III A, we apply the vector-electric potential
method to a left handed material �LHM� for which experi-
mental result is available. The LHM is fabricated from flat,
printed strips that are very close together at some positions,
and therefore deviate significantly from the thin cylindrical
wire radius assumed in the method developed. Nevertheless,
some agreement is obtained and the discrepancies serve as a
useful illustration on the range of validity of the method. In
Sec. III B, we apply all three methods to a number of fre-
quency selective surfaces �FSS�. These are also fabricated
from printed strips, but the strips here are much narrower and
further apart from one another. The condition is therefore
much closer to the thin wire assumption in the method, and
excellent agreement with measurement is obtained. In Sec.
III C, we first apply the methods to a negative material for
comparison with experiment. We also repeat the calculation
for the LHM in Sec. III A, treating it as three separate layers
instead of a single layer. We then design a 3D metamaterial
from thin wires alone, and demonstrate by calculation that a
complete photonic band gap can exist.

A. Left handed material

It has already been shown in �18� that this method can
give good agreement with experiments for split ring resona-
tors. In this section, we present a comparison with a more
complex structure—that of a three layer, left handed mate-
rial. We model the printed circuit structure of split rings and
continuous wires in �4� using thin wires. Our model is shown
in Fig. 1. Two approximations have to be made. The printed
circuit creates the rings and wires from flat copper strips.
These are approximated by thin cylindrical wires. In doing
so, we need to decide what cylindrical radius to use. Refer-
ence �9�, based on considerations on capacitance of the infi-
nitely on strip, suggests a quarter of the width of the printed
strip. In a unit cell in Fig. 1, this would lead to a distance of
only one diameter between the split rings and one of the
continuous wires, which is too close according to �12�, and
produces transmission amplitudes exceeding 1 at the pass-
band near 14 GHz �crosses in Fig. 2�. Instead, we choose
one-twelfth of the strip width, a value that just brings down
the amplitudes below 1 �dots in Fig. 2�. The significance of
this will be discussed later. Next, the method requires a ho-
mogeneous medium. The substrate of the printed circuit is
perpendicular to the array plane and of different permittivity
to the Rohacell foam spacer in between. We have to approxi-
mate it to a continuous medium. We took the volume average
of 1.12, and hope that it is reasonable because the substrate is
much thinner than the spacer.

The results of the calculated R and T are shown in Fig. 2
by the dotted curves. We have repeated the calculation using
double the number of segments in Fig. 1 and obtained nearly
the same results. To check for convergence of the plane wave
sums for the vector and electric potentials, we set a tolerance
value such that if the sum changes by a fraction that is less
than the tolerance when Ng is increased by 1, we accept that
the sum has converged. The results in Fig. 2 are obtained
using a tolerance of 0.001. We find that reducing the toler-
ance to 0.0001 produces almost the same results. The agree-
ment with measurement is fairly good, and the passband is
reproduced correctly near 14 GHz. Discrepancies may be at-
tributed to the approximations described above. In order to
understand the discrepancies, we consider the three main ar-
eas in which the calculation conditions deviate from mea-
surement conditions. These are the approximation to a homo-
geneous medium, the assumption of zero end cap currents,

FIG. 1. Thin wire model of the left handed material in �4�. The
dots represent the junctions of the segments used.
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and the modeling of a flat strip with a cylindrical wire. The
approximation of the current using sinusoidal basis functions
has already been validated by checking that the results con-
verge when the segment number is increased.

The substrate material supporting the copper strips has a
dielectric constant of 2.2 and thickness of 0.025 cm. The two
substrate films present in each unit cell would cause scatter-
ing that can modify the actual E field arriving at each seg-
ment. A simple calculation of a normally incident plane wave
on such a film gives a transmission of the order of −0.01 dB.
This corresponds to an attenuation of about 0.001. Since the
strongest E-field contribution comes from segments in the
same and adjacent unit cells, we may expect the extra scat-
tering to be dominated by a small number of substrate films.
To obtain an upper estimate of the effect, we introduce a
random error that is ten times larger—an error of 0.01 on
each of the computed E fields. The resulting R and T differ
by at most 1%, which is much smaller than the observed
discrepancies in Fig. 2.

Next, we consider the end cap current. This is the current
flowing into the finite area at the tip of each wire end, so that
the length of the wire is effectively increased. It is known
�22� that at resonance, the length of a wire is related to the
half wavelength. Since the passband in Fig. 2 can be attrib-

uted to negative permeability arising from resonance in the
split ring resonators, we may expect that it would shift
slightly if the end cap current is taken into account. As an
upper estimate, we introduce an extra length of one-quarter
the strip width to each of the four ends of the split ring
resonators for each unit cell in Fig. 1. The resulting R and T
are indeed shifted to lower frequency by about 1%, which is
close to the fractional increase in the length of each split ring
resonator. This is also insufficient to explain the discrepan-
cies.

Finally, we consider the effect of modeling a flat strip
with a cylindrical wire. �Note that the strip is 250 �m wide
and 17 �m thick. The thickness is not given in Ref. �4�. The
value stated here is obtained from Ref. �23�, published by
nearly the same group of authors.� This can be studied quali-
tatively by varying the equivalent radius of the wire. When
the radius is one-quarter the strip width, the surface area is
closer to that of the strip, but the shape is very different.
When it is one-twelfth the strip width, the diameter is closer
to the strip thickness, but the surface area is very different.
The results of calculation using these two equivalent radii are
shown, respectively, in crosses and dots in Fig. 2. For the
larger radius, the transmission near 14 GHz exceeds 1, for
reasons explained above, and should be ignored as unphysi-
cal. Otherwise, the measured results fall in or close to the
envelope formed by the dots and crosses over most of the
frequency range. This strongly suggests that approximating
the strip with a cylindrical wire is the main source of error. In
Ref. �4�, a 3D full wave electromagnetic simulation software
is used to simulate the element and gives better agreement.
This is because it can take into account the actual shapes of
the printed strips by a finite element meshing.

On the other hand, this method has certain advantages of
simplicity and efficiency, whether in meshing, coding, or
computation. Despite discrepancies, the results in Fig. 2
show that it can provide reasonable estimates and correct
features even when the elements are not made up of cylin-
drical wires. It is therefore useful for testing out new ideas on
metamaterials, particularly when quick answers are needed
for a variety of different designs.

B. Frequency selective surface

We apply the above combination of methods to a
multilayer FSS illustrated by Fig. 4 of �24�. The measure-
ment in �24� has been carried out by the author, and is used
in Fig. 3 in this section for comparison with the calculation.
This consists of four layers of straight wire arrays embedded
in 1.7-mm-thick Kevlar. Each wire element is made by etch-
ing on a printed circuit, and is a copper strip of length 8 mm
and width 80 �m, at some angle � to the x axis. Each array
is a square lattice, with lattice constant 9 mm in both x and z
directions. �The y direction in �24� corresponds to the z di-
rection in this paper.� The four pieces of Kevlar are separated
from one another by foam spacers. The full specification of
the FSS is reproduced here in Table I. The measured permit-
tivity of the Kevlar alone is 3.65, and that of the foam is
1.035. �These are different from �24�, and are obtained from
separate measurements by the author.� Each Kevlar layer

FIG. 2. The solid curves are the measured results of the left
handed material in �4�. The crosses are calculated using an equiva-
lent radius of a quarter of the copper strip width, and the dots are
calculated using one-twelfth of the strip width.
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tends to be slightly curved after fabrication, so when they are
assembled with the foam spacers, there could be some air
gap between Kevlar and foam. This could have led to the
difference between calculation and measurement in �24�.
Here, we show that by varying the foam thicknesses slightly,
it is possible to obtain much better agreement with measure-
ment.

We apply both the vector-electric potential method and
the direct E-field method to calculate the Q matrices for the
wire arrays in layers 1, 3, 5 and 7, for the original incident
angle of 20° in the xy plane, with the E field parallel to the
plane of incidence. The 15 sets of Q matrices are then con-
structed for the interfaces and arrays listed in Table II. Sets 3,
7, and 11 are identical and need only be computed once.
Likewise for sets 5, 9, and 13. We find that when we use the
nominal thicknesses of the foam spacers, we obtain results
that are nearly the same as those calculated results shown in
Fig. 5�b� of �24�. We then vary these and find that that the
reflection peaks are quite sensitive to the spacer thicknesses.
In contrast, the transmission peak hardly changes. We vary
all of the foam thicknesses by the same amount each time,
and find that a common increase of 1 mm in every spacer
gives much better agreement, as shown in Fig. 3. Hence the
reason for using the spacer thicknesses given above for Q
matrices with set numbers 4, 8, and 12.

Note the close agreement between the vector-electric po-
tential method and the direct E field method. The former
requires an additional approximation to calculate the poten-
tial gradient over a small distance 	l, around the observation
point of each segment. The agreement shows that this ap-
proximation is valid. It should be more accurate if 	l is
smaller, but if 	l is too small, the result would become domi-
nated by error due to the level of machine accuracy. For this
case, we have chosen 	l to be 1% of the segment length.

We have chosen Ns=4 for the wire element in each array.
We have checked that the result is almost unchanged for
Ns=8. We set a tolerance level for convergence of each plane
wave sum to be 0.001, and checked that a tolerance of
0.0001 gives no noticeable difference to the calculation re-
sults in Fig. 3. For a tolerance of 0.001, we found that Ng is
about 70 for convergence in the vector-electric potential
method, and 700 for the direct E-field method. An increase
of Ng by 10 times means an increase of 102 plane wave
terms, resulting in the difference in computation times of up
to two orders of magnitude between the two methods, as
shown in Fig. 4.

For the cascading method, we apply Eq. �14� repeatedly
to assemble the 15 sets of Q matrices listed above. Before
doing so, we have to determine how many plane wave terms
to include into each Q matrix. We find that convergence is
achieved when Ng=2. This means nine plane wave terms,
each with two polarizations, so that the size for each Q ma-
trix is 18�18. Of course, this has to be confirmed by com-
puting the result for Ng=3, when the size for each Q matrix
is 50�50. This means that significant storage may be re-
quired for the cascading method, a tradeoff for the savings in
computation time. We use a program written in MATLAB for
the cascading, which takes 76 s to produce Fig. 3 from the
computed Q matrices. It should be much faster if written in
C and properly optimized. For Ng=3, we find that a set of
four Q matrices stored in single precision, for a single array
of wires requires 324 KB for each frequency point. Figure 3

FIG. 3. T represents the transmitted amplitude, and R represents
the reflected amplitude. The dotted curves are the measurement re-
sults from Fig. 5�b� in �24�. The solid curves are calculated from the
vector or potential method, and the dashed curves are calculated
from the direct E-field method.

TABLE I. Specification of the multilayer FSS.

Layer Description

1 Kevlar, �=90°

2 Foam, nominal thickness 1.0 mm

3 Kevlar, �=45°

4 Foam, nominal thickness 1.5 mm

5 Kevlar, �=−45°

6 Foam, nominal thickness 1.0 mm

7 Kevlar, �=0°

TABLE II. Interfaces and arrays in the FSS.

Set Description

1 Interface from air to Kevlar

2 Wire array in layer 1

3 Interface from Kevlar to foam

4 Foam thickness of 2 mm

5 Interface from foam to Kevlar

6 Wire array in layer 2

7 Interface from Kevlar to foam

8 Foam thickness of 2.5 mm

9 Interface from foam to Kevlar

10 Wire array in layer 3

11 Interface from Kevlar to foam

12 Foam thickness of 2 mm

13 Interface from foam to Kevlar

14 Wire array in layer 4

15 Interface from Kevlar to air
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is computed at intervals of 0.1 GHz,and requires 50.3 MB
for all the Q matrices of one array. We only store the Q
matrices of set numbers 2, 6, 10, and 14 for the four arrays.
The other Q matrices are generated on the fly as required.
However, if necessary, the Q matrices for each array may
also be generated on the fly from the calculated Vij �in Eq.
�9�� of that array. This took only 43 seconds for one array
over the above frequency range on our 3 GHz computer,
using CLAPACK. In contrast, the calculation of Vij over the
frequency range for the multiple scattering of one array takes
16 hours for the direct E-field method, and 20 minutes for
the vector-electric potential method. The long computation
time is due to the very small radius of 20 �m assumed for
the equivalent wire radius. A larger radius that is still small
compared with the wire length would give similar results, at
much smaller computation time as shown in Fig. 4. Since we
are modeling the flat copper strips as cylindrical wires, a
larger radius may be chosen as an approximation if a quick
estimate is required.

The calculated results agree well with the measured re-
sults. The discrepancies may be attributed to differences be-
tween the calculation and simulation conditions. One differ-
ence is that the spacing between arrays is likely to be
nonuniform because the Kevlar samples are curved. Another
is the finite size of the sample. A third is the presence of
losses in the Kevlar and foam. Using the measurement
method described in �24�, it has not been possible to measure
the imaginary part of the permittivity for these two materials
as they are below noise level. However, sharp peaks �or
nulls� in Fig. 3 are likely to be sensitive to losses even if they
are small.

Figure 4 compares the computation time per frequency
point for the two methods. This computation time is only the
time for calculating the multiple scattering �Vij in Eq. �9�� for
one array. These are plotted against a, the wire radius. The
wire radius strongly affects the computation time because it
determines the height of the observation point above the ar-
ray plane of the axis of a source segment. This height is the
y coordinate of Ri–R j in Eqs. �3�–�7�, and determines the
exponentially decaying part of the sum because the y coor-
dinate of r̂� is imaginary for large �k ,n�. Thus, as the wire

radius decreases, the observation point approaches the array
plane of the source segment, and the exponential function
decays more slowly, leading to slower convergence. The
smallest a plotted in Fig. 4 is the equivalent radius of 20 �m
that is used in the calculation of Fig. 3. This is taken as a
one-quarter of the copper strip width on the array as sug-
gested in Ref. �9�. The largest a is taken as 1/8 of the seg-
ment length we have used, which is 2 mm for the wire length
of 8 mm and Ns=4. According to �8�, 1/8 the segment length
is the largest radius that should be used for the thin wire
approximation. Therefore, Fig. 4 gives an overview of the
computation time required for a typical range of wire radii.
The codes for the calculation, which have not been opti-
mized, are written in C language, and are run on a 3 GHz
computer.

There is one limitation for the cascading method. If the
dielectric layers are very thin, a large number of plane wave
terms may be required for convergence, and storage of the
large Q matrices could become a problem. The reason is that
the attenuation of a plane wave reaching the interface of the
dielectric layer containing an array depends on �n ,k�, as de-
termined by Eqs. �3�–�7�. If convergence is achieved when
Ng=2, it means that plane wave terms with �n2+k2 more
than 2 have decayed enough to be neglected when they reach
the interface. For a thinner layer, the interface would come
closer to the array, and only plane wave terms with larger
�n2+k2 would have decayed sufficiently. Thus more plane
waves have to be included in the cascading and a larger
value of Ng would be required for convergence, hence larger
Q matrices.

C. Photonic band gap

We begin by testing the method on a negative epsilon
material. The construction and measurement results are given
by Figs. 8 and 11 in Ref. �7�. As this involves wires that are
continuous across adjacent unit cells, an additional condition
has to be imposed on the current along the wire element. A
wire segment at the unit cell boundary is joined to a segment
in the adjacent cell. The condition is that the current along
the latter segment differs from that along the corresponding
segment in the original unit cell by a factor of exp�−iK� ·d�,
where d is the displacement of the second unit cell from the
first. This is a result of the Floquet condition �13� or Bloch’s
theorem �14�, and is explained in more detail in Appendix A.
As the wires are gold coated tungsten with a diameter of the
order of micrometers, we model it with copper, which is
intermediate in conductivity between the two. Using the
nominal diameter of 20 �m, the calculation shown in Fig. 5
agrees with the measured result fairly well. If we increase the
resistance as is done in Ref. �7�, we may expect the trans-
mission to decrease and the agreement to improve.

We now apply the cascading method to the left handed
material studied in Sec. III A. We first repeat the calculation
using the vector-electric potential method of Sec. II A, but
for only one layer instead of all three layers in Fig. 1. This
gives the Q matrices for one layer. Since all three layers are
identical, we can then proceed to assemble them using the
cascading method of Sec. II C. The physics issues are the

FIG. 4. The dots represent the computation time per frequency
point for one array, for the vector-electric potential method. The
crosses represent the time for the direct E-field method.
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same here. We model the elements with thin cylindrical
wires running along the middle of the printed wires, assum-
ing an equivalent radius of one-twelfth of the wire width. We
approximate the substrate as a homogeneous medium by tak-
ing an average value of the permittivity of 1.12. The calcu-
lated results are shown in Fig. 6 and agree with the results in
Fig. 2.

We now consider a thin wire element with the structure
shown in Fig. 7�a�. Four wires are joined at the origin. The
other ends point towards four of the corners of a cube. These
corners are at �6�2, −6, 0�, �−6�2, −6, 0�, �0, 6, −6�2�, and
�0, 6, 6�2�, in millimeters. The length of each wire is 9 mm,
and radius 0.1 mm. The basis vectors of the lattice are a
= �12�2,0 ,0�, b= �0,0 ,12�2�, and c= �6�2,12,6�2� in mm.
This can be shown to be an fcc lattice. We have chosen these
to basis vectors to make it easy to apply the method. The
presence of the junction requires an additional condition for
the currents along the wires, which is that the charge densi-

ties must be constant for all the wires in the neighborhood of
the junction �12,25�.

In order to map out the band structure, we consider the
projection of the 3D polygon bounded by X, U, L, K, W �Fig.
7�b�� on to the xz plane. This forms a triangle. We compute
the band structure with respect to ky for each K� point along
this triangle. These points are taken at intervals of 0.05, in
units of cy /
, where cy is the y component of c. Note that
cy /
 is the distance of X from the origin. The frequency is
taken from 0.2 to 20 GHz, at intervals of 0.2 GHz. For each
frequency, the eigenvalue exp�−ik ·c�, in the Bloch wave
equation is computed. This is divided by exp�−iK� ·c� to give
exp�−ikycy�, and then solved for ky. In principal, the magni-
tude of the eigenvalue should be 1 in order to give propagat-
ing Bloch waves. In practice, numerical errors and resistance
losses mean that the calculated values would be slightly dif-
ferent from one. For our calculation, we have chosen to keep
only magnitudes that are between 0.9 and 1.1. We can inter-

FIG. 5. The solid curves are the calculated transmission through
20 layers of the continuous wire structure whose unit cell is shown
in the inset, where the dots mark the ends of the segments used. The
dashed lines are the experimental results in �7�.

FIG. 6. The solid curves are the calculated transmission �T�
through and reflection �R� from three layers of the left handed ma-
terial whose unit cell is shown in the inset, where the dots mark the
ends of the segments used. The dashed lines are the experimental
results in �4�.

(a)

(b)
FIG. 7. �a� The wire element in the photonic crystal. When

repeated using the fcc basis vectors defined in the text, the edges of
the cube shown just touch one another. �b� The Brillouin zone of the
fcc lattice. Note the orientation of the axes for our definition of the
basis vectors.

PHOTONIC BAND GAP IN THIN WIRE METAMATERIALS PHYSICAL REVIEW E 77, 036701 �2008�

036701-9



pret this physically. For a magnitude of exp�−ik ·c� equal to
0.9, the intensity is attenuated by 0.92 after passing through
one layer. This means it would decrease exponentially by
about half after only three layers. 1.1 is approximately 1/0.9
and corresponds to decay in the opposite direction. If we use
this to define the propagating distance, then our choice of the
0.9 and 1.1 range of eigenvalues keeps only Bloch waves
that can propagate for more than three layers.

After computing the band structure in ky for each point
along the projection of XULKW, the band structure along the
lines joining the actual symmetry points can then be mapped
out. This is done for each K�, by determining the ky value of
the corresponding point on XULKW, and then interpolating
on the band structure to find all the propagating Bloch wave
energies at that value of ky. In this way, we obtain the band
structure shown in Fig. 8. Notice the full band gap from 7.4
to 8.8 GHz. For our choice of �, this band gap should be
interpreted as the energy range within which no wave can
propagate for more than three layers. Conversely, it is also
possible for waves outside the band gap to attenuate after
three layers. We find that waves close to the band gap do
tend to attenuate more than those further away.

X� and W� are equivalent symmetry points to X and W.
From Fig. 7�b�, X� happens to be the projection of W� on the
xz plane. If K� is taken at X�, the ky band structure should be
identical with the band structure along the XW line. We carry
out the calculation and find that this is indeed the case, as
shown by the crosses in Fig. 8. This serves as a confirmation
of the accuracy of the method, as the two results are calcu-
lated along quite different K�. From Fig. 7�b�, the band struc-
ture along XW is calculated for k vectors close to normal
incidence, whereas those along X�W� are close to grazing
angles. The band at 7.4 GHz has not appeared in the calcu-
lation along X�W� because it is too narrow. It is possible to
see this along XW because these are obtained by interpolat-
ing along band structures outside the XW.

This band gap is not wide compared to those reported of
metallodielectric photonic crystals �5�. It is interesting nev-
ertheless because the thin wires occupy such a small fraction

of the volume. We have assumed that the medium has a
permittivity of 1, which can be approximated by foam spac-
ers, though the calculation could also be carried out for any
homogeneous medium. We found that if we shorten the wires
to 6 mm, keeping them connected at the junction, the upper
band in Fig. 8 around � lowers and closes the gap. The same
is true if we disconnect the wires at the junction. Examining
the transmission and reflection through one layer of the pho-
tonic crystal shows a resonance that is similar to a periodic
array of straight conducting fibers of length 18 mm, twice
the length of each wire. It occurs at 8.3 GHz, exactly where
the band gap is located, and close to where the lattice con-
stant 
a3
 is half a wavelength. This suggests that the com-
plete gap arises as a result of strong increase in scattering at
the Brillouin zone boundary. As the resonance frequency is
directly related to the wire length, this offers a simple means
of tuning the band gap.

IV. CONCLUSION

In conclusion, we have developed a method for calculat-
ing electromagnetic wave propagation through thin wire
metamaterials, and demonstrated that a complete band gap is
possible for a photonic crystal made up of only thin wires.
This method combines phased array antenna calculation,
FSS, design, and LEED theory, which we have shown to be
reliable by comparison with experiments.

The method is developed specifically for metamaterials
made up of thin wires only. Each element is therefore treated
as a 1D object and discretized into segements. In FEM or
FDTD methods, the thin wire would have to be treated as a
3D object. Even assuming that periodic condition and cas-
cading are used throughout, a proper comparison among the
methods is difficult as they involve different types of com-
putation. Our method has relatively few unknowns per ele-
ment, but requires summing of plane waves to convergence.
In FEM, each segment would have to be further discretized
into 3D elements. This would obviously increase the compu-
tational load significantly and perhaps unnecessarily. FDTD
does not require a scan over frequencies, but would require
sufficiently small discretization to model the element be-
cause it uses a rectangular grid. The closest of the existing
methods is the well established PMM that is used for FSS
design �13�, and Fig. 4 shows that our method is faster by as
much as two orders of magnitude.

We expect that our method can be used successfully when
the wavelength is comparable to or longer than the wire seg-
ment, as is typical of the MoM method �12�. We also find by
calculation that the appearance of a band gap despite the very
low volume fraction of the elements is related to the thin
wire resonance. We hope that an experiment can be carried
out to verify this in the future.
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APPENDIX A

This choice of the basis function in Eq. �1� �12,21� ap-
pears to give three unknown coefficients per segment. In
fact, it would reduce to one coefficient per segment when the
conditions of continuity in current and charge density are
imposed at the segment junctions. However, to obtain
enough equations, one more condition on the current at each
end of the wire is needed. Reference �12� gives an expression
for the end cap current, relating the current gradient to the
wire radius. Here we assume that the end cap current is neg-
ligible. This is valid for very thin wires as the end cap area is
small.

Consider the E field of Ij at Ri, the observation point on
the surface at the center of the ith segment. This can be
computed using the following equation �26�:

E = − �� −
�A

�t
, �A1�

where � is the electric potential and A the vector potential,
both due to Ij. In the time harmonic case, the component
along the ith segment can be discretized as

Eij = −
��Ri + 	lpi/2,R j� − ��Ri − 	lpi/2,R j�

	l

− iA�Ri,R j� · pi, �A2�

where pi is the unit vector parallel to segment i, and Eij is the
E-field component along segment i, due to Ij. 	l is the dis-
tance over which the potential difference due to the charges
on segment j is to be computed. In �17�, 	l is taken to be li,
the full length of segment i. Since we are using the point
matching method, 	l should be a small fraction of this. We
have used 0.01li to 0.1li for our simulation.

This approach separates the E field into a contribution
from the charge density on segment j which produces �, and
a contribution for the current which gives A. The charge
density is obtained from the continuity equation �26�

� · J +
��

�t
= 0, �A3�

where J is the current density and � the volume charge den-
sity. In the time harmonic case, this gives

� j = −
1

j

dIj

ds
, �A4�

where � j is the line charge density on segment j. Substituting
Eq. �1� gives

� j = Aj�	�s − sj + lj/2�
j

−
	�s − sj − lj/2�

j
	

� Bj�− �lj
cos ��s − si�

jlj
+ sin

�li

2

	�s − sj + lj/2�
j

+ sin
�lj

2

	�s − sj − lj/2�
j

	 + Cj��lj
sin ��s − sj�

jlj

− cos
�lj

2

	�s − sj + lj/2�
j

+ cos
�lj

2

	�s − sj − lj/2�
j

	 .

�A5�

Note the appearance of 	 functions. These appear because Ij
terminates abruptly at the two ends of the isolated segment j.
They correspond to point charges. The first two are the ones
approximated as line charges in �17�. Fortunately, the re-
quirement that the current be continuous at the junctions
means that all point charges cancel exactly except for those
at the two free ends of the wire element, where they can also
be neglected because we have assumed that end cap currents
are zero. Thus, the charge density reduces to

� j = −
�Bj

j
cos ��s − si� +

�Cj

j
sin ��s − sj� . �A6�

The contribution of a length element dl on segment j to A
and � are then, following the notations of �13�, given by �17�

dA =
ZIjdl

2jDxDz
p̂ j �

k=−�

�

�
n=−�

�
exp�− j�R · r̂��

ry
, �A7�

and

d� =
� jdl

2j��DxDz
�

k=−�

�

�
n=−�

�
exp�− j�R · r̂��

ry
, �A8�

where Dx is the period along the x direction, Dz is the period
along z, � is the permittivity, and Z is the impedance �� /�.
R is the position vector of Ri relative to the element dl on
segment j. Defining the original incident direction ŝ to be
x̂sx+ ŷsy + ẑsz, r̂� is given by �13�

r̂� = x̂�sx + k
�

Dx
� � ŷry + ẑ�sz + n

�

Dz
� , �A9�

where

ry =�1 − �sx + k
�

Dx
�2

− �sz + n
�

Dz
�2

. �A10�

The sign is to be chosen such that the plane wave sums in
Eqs. �A7� and �A8� converge. This means the same sign as
the y coordinate of R. Note that the convention used for the
square root sign for ry is as follows: �x= 
�x
 for x�0, �x
=−j 
�−x
 for x�0.

The unknown coefficients Aj, Bj, and Cj are then obtained
by following a procedure similar to that used in the NEC
MoM algorithm �12�. dA and d� in Eqs. �A7� and �A8� can
be manipulated in a very similar way to dE, using the same
techniques that are used in FSS calculations �13�—see Ap-
pendix B—to give Eij. Point matching and Ohm’s law then
give

�Ei
inc + �

j=1

Ns

Eij�li = ĪiZ̄i, �A11�

where Ei
inc is the tangential component of the incident E field

at Ri, so that the left hand side is approximately the total
voltage across segment j. The averaged current, obtained by
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averaging Eq. �1�, is used on the right hand side,

Īi = Ai + Ci sinc��li/2� . �A12�

The next set of equations is from continuity of current at
segment junctions.

Ai + Bi sin
�li

2
+ Ci cos

�li

2
= Ai+1 − Bi+1 sin

�li+1

2

+ Ci+1 cos
�li+1

2
. �A13�

The third set is from continuity of line charge density.

Bi cos
�li

2
− Ci sin

�li

2
= Bi+1 cos

�li+1

2
+ Ci+1 sin

�li+1

2
.

�A14�

The last set is from assumption of zero end cap current.

A1 − B1 sin
�l1

2
+ C1 cos

�l1

2
= ANs

+ BNs
sin

�lNs

2

+ CNs
cos

�lNs

2
= 0.

�A15�

These four sets of equations form a linear system which can
be solved using Gaussian elimination.

In a continuous wire structure, it is possible for wires to
continue from one unit cell into an adjacent unit cell. Figure
1, for example, shows three unit cells in which each cell
consists of two wires that are continuous into adjacent cells.
In such cases, additional equations are needed to ensure the
smoothness of current across the unit cell wall. Consider two
segments i and j. Suppose that segment i on the adjacent unit
cell is connected to segment j in the original cell through the
common cell wall. Suppose that this adjacent unit cell is
displaced from the original unit cell by a vector d. Using the
Floquet condition �13�, the current on segment i in the adja-
cent cell should differ from the current on segment i in the
original cell by a factor of exp�−j�ŝ ·d�. Suppose further that
the end of segment j meets the start of segment i of the

adjacent cell. Then Eqs. �A13� and �A14� must be rewritten
for these two segments as

Aj + Bj sin
�lj

2
+ Cj cos

�lj

2

= exp�− j�ŝ · d��Ai − Bi sin
�li

2
+ Ci cos

�li

2
� ,

�A16�

and

Bj cos
�lj

2
− Cj sin

�lj

2

= exp�− j�ŝ · d��Bi cos
�li

2
+ Ci sin

�li

2
� . �A17�

For the case in Fig. 1, for instance, d= x̂Dx.

APPENDIX B

The derivation of the vector-electric potential method
from first principles has been described in �17,18�. We pro-
vide here an alternative derivation from the direct E-field
method to show the close connection between the two. We
also offer an explanation for the much faster convergence of
the vector-electric potential method.

The E-field contribution from an infinitesimal wire length
dl is given by �13�

dE = I00dl
Z

2DxDz
�

k=−�

�

�
n=−�

�
exp�− j�R · r̂��

ry
ē�, �B1�

where ē�= �p̂ j � r̂��� r̂�. R here is the position of the ob-
servation point relative to dl. As we are dealing with typical
FSS, we shall only consider wire elements lying in the plane
of the array. We choose the observation point such that its y
coordinate relative to the array plane is +a, where a is the
wire radius. Then the � sign in the above expression has to
be chosen so that convergence is possible. For a general
current distribution I�l� over segment j of the wire element,
such as the one in Eq. �1�, the E field from the whole seg-
ment is obtained by integrating Eq. �B1� as follows:

E =
Z

2DxDz
�

k=−�

�

�
n=−�

�

ē+�
−lj/2

lj/2 exp�− j�R · r̂+�
ry

I�l�dl =
Z

2DxDz
�

k=−�

�

�
n=−�

�
exp�− j��R − R j� · r+�

ry
ē+�

−lj/2

lj/2 exp�− j�lp j · r+�
ry

I�l�dl .

�B2�

From Ref. �13�, ē�= �p̂ · r̂��r̂�− p̂, so that

E =
Z

2DxDz
�

k=−�

�

�
n=−�

�
exp�− j��R − R j� · r̂+�

ry
�p̂ j · r̂+�r̂+�

−lj/2

lj/2

I�l�exp�− j�lp̂ j · r̂+�dl −
exp�− j��R − R1� · r̂+�

ry
p̂ j

��
−lj/2

lj/2

I�l�exp�− j�lp̂ j · r̂+�dl . �B3�

Integrating the first term by parts,
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E =
Z

2DxDz
�

k=−�

�

�
n=−�

�

−
exp�− j��R − R1� · r̂+�

ry
p̂ j�

−lj/2

lj/2

I�l�exp�− j�lp̂ j · r̂+�dl

+
exp�− j��R − R j� · r̂+�

ry
��I�l�

exp�− j�lp̂ j · r̂+�
�− j�p̂ j · r̂+�

	
−lj/2

lj/2

− �
−lj/2

lj/2 dI

dl

exp�− j�lp̂ j · r̂+�
�− j�p̂ j · r̂+�

dl��p̂ j · r̂+�r̂+. �B4�

From the formula for the line charge density in Eqs. �A4� and �5�,

E =
Z

2DxDz
�

k=−�

�

�
n=−�

�

−
exp�− j��R − R1� · r̂+�

ry
p̂ j�

−lj/2

lj/2

I�l�exp�− j�lp̂ j · r̂+�dl

+
exp�− j��R − R j� · r̂+�

ry
��I�l�

exp�− j�lp̂ j · r̂+�
�− j�p̂ j · r̂+�

	
−lj/2

lj/2

− �
−lj/2

lj/2

j��l�
exp�− j�lp̂ j · r̂+�

�− j�p̂ j · r̂+�
dl��p̂ j · r̂+�r̂+

=
Z

2DxDz
�

k=−�

�

�
n=−�

�

−
exp�− j��R − R j� · r̂+�

ry
�p̂ j�

−lj/2

lj/2

I�l�exp�− j�lp̂ j · r̂+�dl� −
exp�− j��R − R j� · r̂+�

�ry
r̂+�

−lj/2

lj/2

��l�

�exp�− j�lp̂ j · r̂+�dl + I�lj/2�r̂+
exp�− j��R − Ra� · r̂+�

j�ry
− I�− lj/2�r̂+

exp�− j��R − Rb� · r̂+�
j�ry

. �B5�

where Ra is the end of segment j, and Rb is the start.
These terms can now be interpreted physically. The first

term comes from the vector potential. The second term is the
contribution from the charge distribution over segment j. The
third term is the E field from a point charge at the start of the
segment. The fourth term is the E field from a point charge at
the start of the segment. To see that this is indeed the case,
we compare this with the plane wave expansions for the
vector potential and electric potential given in Eqs. �A7� and
�A8� for an infinitesimal wire length. Comparing the first
term in Eq. �B5� with the expansion for dA, we see that the
first term is in fact −jA, where A is obtained from dA by
integrating over segment j. To compare the remaining terms,
we must first derive the E-field from d�. This is obtained by
taking its negative gradient with respect to R,

dE = − ��d�� = −
� jdl

2�DxDz
r̂� �

k=−�

�

�
n=−�

�
exp�− j�R · r̂��

ry
.

�B6�

This can be interpreted as the E field of a point charge of
magnitude �dl. Notice that it is different from dE of Eq.
�B1�, because the latter has contributions from the current on
dl as well as two charges at the start and end points. Com-
paring this E field for a point charge with the second to
fourth terms in Eq. �B5�, we see from the common presence
of r̂ that these latter terms may indeed come from charges. A
more detailed comparison would show that the second term
in Eq. �B5� comes from integrating Eq. �B6� over segment j
for a line charge of distribution ��l�. Likewise, the third term
comes from a point charge of charge −I�lj /2� at the end of
segment j, and the fourth term comes from a point charge of
charge +I�−lj /2� at the start of segment j. We have thus
shown that Eq. �B5� is in fact the time harmonic form of

E = − �� −
�A

�t
, �B7�

from which the vector-electric potential is derived in �17,18�.
As explained in �18�, the requirement for continuity in

current at junctions of segments means that point charges at
segment junctions cancel exactly. The assumption of zero
end cap currents means that point charges at the free ends of
the wire element have zero magnitudes. Thus, the point
charges in Eq. �B5�, represented by the third and fourth
terms, can be omitted, giving

E =
Z

2DxDz
�

k=−�

�

�
n=−�

�

−
exp�− j��R − R j� · r̂+�

ry
p̂ j�

−lj/2

lj/2

I�l�

�exp�− j�lp̂ j · r̂+�dl

−
exp�− j��R − R j� · r̂+�

�ry
r̂+�

−lj/2

lj/2

��l�

�exp�− j�lp̂ j · r̂+�dl

= − jA�R,R j� − ���R,R j� . �B8�

Note that this is not the actual E field due to the array of
isolated segment j, but will give the actual E field of the
array of the whole wire element when summed over all seg-
ments using a current that satisfies the properties just men-
tioned. In the second term, the components of r̂+ increase in
magnitude as k and n increase during the summation over
them. Recall from Eq. �B6� that r̂+ comes from taking the
gradient of the electric potential in Eq. �A8�, which does not
contain r̂+ and should therefore be able to converge faster.
With A and � defined as in Eq. �B8�, we can also calculate
the E field along the observation segment i by discretizing
the potential instead of using Eq. �B8� directly as follows:
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E · p̂i = − jA�Ri,R j� · p̂i

−
��Ri + 	lp̂i/2,R j� − ��Ri − 	lp̂i/2,R j�

	l
. �B9�

This is the expression used in our implementation of the
vector-electric potential method, originally motivated by a
similar treatment in �17�.

As we have shown in Fig. 3, where 	l is chosen to be
0.01lj, this works well. Not only does it give comparable
accuracy with the direct E-field method, but it converges
much faster. In order to see the reason for this, we compare
the plane wave summation for the two methods for the case
when I�l�=1 on segment j. For the direct E-field method,
evaluation of Eq. �B2� gives

E =
Z

2DxDz
�

k=−�

�

�
n=−�

�
exp�− j��Ri − R j� · r̂��

ry

�sinc��p j · r̂�lj/2�ē�. �B10�

For the vector-electric potential method, the required sum-
mations are obtained by integrating Eqs. �A7� and �A8� as
follows:

A =
�

2jDxDz
p j �

k=−�

�

�
n=−�

�
exp�− j��Ri − R j� · r̂��

ry

�sinc��p̂ j · r̂�lj/2� , �B11�

� =
1

2jk�DxDz
�

k=−�

�

�
n=−�

�
exp�− j��Ri − R j� · r̂��

ry

�sinc��p̂ j · r̂�lj/2� , �B12�

which would then be used in Eq. �B9�. Note that the sum-
mations for both A and � have essentially the same form. In
all cases, the increasing quantities are the components of r̂+.
Extracting only the parts in Eq. �B10� containing these com-
ponents gives terms of the form

�
k=−�

�

�
n=−�

�
exp�− j�R · r̂��
ry��p̂ j · r̂�lj/2�

��p̂ � r̂�� � r̂��

→ �
1

� exp�− �yr�
r2 r22
rdr . �B13�

Extracting the corresponding parts in Eqs. �B11� and �B12�
gives terms of the form

�
k=−�

�

�
n=−�

�
exp�− j�R · r̂��
ry��p̂ j · r̂�lj/2�

→ �
1

� exp�− �yr�
r2 2
rdr .

�B14�

The integrals on the right hand side show the order of mag-
nitude of the sums for large values of �k ,n�, when r
=�rx

2+rz
2 also become large. �Note that r here is not the ac-

tual magnitude of r̂+, which is 1.� We have set the lower limit
of the integrals to 1 to avoid the singularity that can occur if
r is zero. This does not affect the reasoning as we only com-
pare the rate of convergence for large r. The value of y is the
radius of the wire, which is also the displacement of the
observation point from the array plane of the axis of segment
j. In both integrals, the factor of exp�−�yr� would force
them to converge. However, the first integral would converge
more slowly because of the increasing factor of r, whereas
the second integral would converge more rapidly because it
has a decreasing factor of 1/r. This difference by a factor of
r2 explains why the vector-electric potential method can be
faster than the direct E-field method by one to two orders of
magnitude as shown in Fig. 4, despite the fact that more than
one summation is required by Eq. �B9� for the former
method. Note also that if y becomes zero, the first integral
diverges because the integrand oscillates with increasing am-
plitude. However, the second integral can still converge be-
cause the integrand oscillates with decreasing amplitude.
This can explain the trends in Fig. 4 which show that as the
wire radius decreases, the computation time for the vector-
electric potential method seems to approach a fixed value,
whereas the time for the direct E-field method continues to
increase in a straight line. The property that the sum con-
verges even when the observation point lies in the array
plane is also the reason why the vector-electric potential
method is suitable for tilted elements in �17,18�.
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